

SCHOOL OF ELECTRICAL AND ELECTRONICS

Minutes of Board of Studies Meeting held on 7th May 2022

(Virtual Meeting conducted on Zoom Platform (Time: 10.30 a.m. to 12 noon)

- Dr.N.M.Nandhitha, Prof. & Dean School of Electrical and Electronics started the meeting by welcoming both the external and the internal numbers to the Board of Studies meeting (07.05.2022, 10.00 a.m. to 12.00 noon)
- Dr.T.Ravi, Head, Dept. of Electronics and Communication Engineering informed the board that core competencies are identified from the feedback obtained from the students, faculty, Alumni and employers.
- Dr.P.Kavipriya presented the revision carried out in the course Machine Learning Techniques. Dr.M.D.Selvaraj Associate Professor, IIITDM accepted the changes and suggested to include topics such as Occam learning, accuracy and confidence boosting.
- Dr.E.Annadevi suggested to introduce 'IoT in Logistics Sector' in the course IoT for Real Time Application. Dr.N.Sivakumaran Prof.,NIT, Tirchy accepted the inclusion and also suggested to include Healthcare monitoring Technique for Diabetes Patients.
- Dr.P.Chitra suggested to include the topics 'Machine learning, Artificial neural networks and deep Architectures' in the course Digital Image Processing for Real Time Applications. Dr.Sugudev presented the syllabus revision carried in the course Wireless Communication. Dr.N.Shivakumaran accepted the changes for both the courses.
- Having discussed the revisions in the existing courses, faculty then presented the syllabus for the new courses. Dr.T.Ravi presented the syllabus 'Graphical Programming for Engineers', 'Augmented Reality and Virtual Reality', 'Advanced Electronic Test Engineering' and 'Industry 5.0 for Electronics Engineers' for UG courses. The new syllabus introduced for PG 'Artificial Intelligence for Industrial Applications' and 'Strategies in Industry 5.0' is also briefed by HOD. Dr.M.D.Selvaraj accepted the syllabus for all the courses.

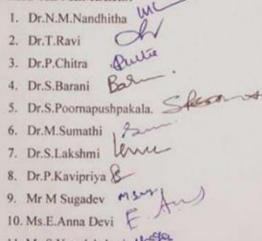
BoS members are happy that the new and the revised courses enhance employability/ Entrepreneurship/Skills of the students.

-	EXTE	RNAL MEMBERS:	Í
	1.	Dr.N.Sivakumaran	
l	2.	Dr.M.D.Selvaraj	
	3.	Mr.J.Visweswaran	
1000		RNAL MEMBERS:	
	1.	Dr.N.M.Nandhitha	
		De T Paul	
	3.	Dr.P.Chitra Quilla	
1	4.	Dr.S.Barani Bar	ĺ
	5.	Dr.S.Poornapushpakala. Staran A	
	6.	Dr.M.Sumathi 1 Part	
	7.	Dr.S.Lakshmi Unu	
	8.	Dr.P.Kavipriya	
l	9.	Mr M Sugadev Mson And	
	10.	Ms.E.Anna Devi E	
	11.	Ms.S.Yogalakshmi	
			1

SCHOOL OF ELECTRICAL AND ELECTRONICS

Minutes of Board of Studies Meeting held on 26th NOVEMBER 2021

(Virtual Meeting conducted on Zoom Platform (Time: 10.30 a.m. to 12 noon)


- Dr.N.M.Nandhitha, Prof. & Dean School of Electrical and Electronics started the meeting by welcoming both the external and the internal numbers to the Board of Studies meeting (26.11.2021, 10.00 a.m. to 12.00 noon)
- Dr.T.Ravi, Head, Dept. of Electronics and Communication Engineering informed the board that core competencies are identified from the feedback obtained from the students, faculty, Alumni and employers.
- Dr.I.Rexlin sheeba proposed to include Signalling System R2, SS7 Layers and its Protocol topic in Telecommunication and switching System. Dr.M.D.Selvaraj Associate Professor, IIITDM accepted the changes and suggested to include topics such as Techniques to improve the Quality of service, Format, Protocol in multicast and IETF Data Tracker.
- Dr.V.VijayaKumar suggested to introduce 'sensor and actuators for IoT Application' in the course Measurement and Instrument. Dr.N.Sivakumaran Prof.,NIT, Tirchy accepted the inclusion and also suggested to introduce infrared sensors.
- Dr.M.Sumathi suggested to include the topics 'Realizing application in FPGA' in the course Programming in HDL. Dr.N.Shivakumaran accepted the changes.
- Having discussed the revisions in the existing courses, faculty then presented the syllabus for the new courses. Dr.P.Chitra presented the syllabus Deep Learning for Computer Vision and Real-time System Design. Dr.M.D.Selvaraj accepted the syllabus for both the courses.
- Dr.M.Sugadev presented the syllabus for Digital System Design and Verification using System Verilog. Dr.N.Sivakumaran suggested to include Real Time implementation topic in the syllabus.

BoS members are happy that the new and the revised courses enhance employability/ Entrepreneurship/Skills of the students.

EXTERNAL MEMBERS:

- 1. Dr.N.Sivakumaran
- 2. Dr.M.D.Selvaraj
- 3. Mr.J.Visweswaran

INTERNAL MEMBERS:

11. Ms.S.Yogalakshmi

Department of ECE School of Electrical and Electronics Sathyabama Institute of Science and Technology

Academic Year (2021-22)

New Course	New Course Name
SECA4006	Deep Learning for Computer Vision
SECA4007	Real-time System Design
SECA3021	Digital System Design and Verification using System Verilog
SECA3022	Graphical Programming for Engineers
SECA3023	Augmented Reality and Virtual Reality
SECA3024	Advanced Electronic Test Engineering
SECA1404	Industry 5.0 for Electronics Engineers

SECA	A4006 LEARNING FOR COMPUTER VISION							
Pre re	quisite: N	IL	C	o Re	quis		-	100
Cours • •	To beco To unde To analy	ves ore the fundamental concepts of computer vision me conversant with ANN rstand various CNNs rze deep learning concepts and techniques for uate the solutions for real world problems in cla	computer vision	on ar	id re	cog	nition	
UNIT I		CONTENTS TER VISION FOUNDATIONS						HOURS 9
	•	Formation, Representing Images, Linear Filt Corner Detection; Scale Space, Feature Det g.	•					
II	Perceptr	STANDING DEEP LEARNING on, Activation Functions, Artificial Neural tional Neural Networks, Recurrent Neural Netw		g Ne	ural	Ne	etworks,	9
III	Introduc	LUTIONAL NEURAL NETWORKS tion to CNNs; Evolution of CNN Architectures s, DenseNets.	: AlexNet, ZFNet, V	/GG	Inc	epti	onNets,	9
IV	Classific	EARNING FOR COMPUTER VISION ation, Detection or Localization and Segn ng, Generative Models – Concepts and Techn	•	ty Le	earni	ng,	Image	9
V	APPLIC Image C world pre	Classification, Object Detection, Face Recogni	tion – Practical Ap	proa	ch to) SO	lve real	9

Course Outcomes

On completion of the course, the student will be able to

CO1-Apply mathematical concepts for understanding digital Images

CO2-Analyze the deep learning concepts

CO3-Analyze various convolutional neural networks

CO4-Identify suitable deep learning techniques for classification and detection problems

CO5-Implement image classification and object detection systems using deep learning

CO6-Solve real world problems in classification, detection and recognition using deep learning

- 1. Mahmoud Hassaballah and Ali Ismail Awad, "Deep Learning in Computer Vision: Principles and Applications", CRC Press, Taylor & Francis Group, 2020.
- 2. Jason Brownlee, "Deep Learning for Computer Vision: Image Classification, Object Detection and Face Recognition in Python", Machine Learning Mastery, 2019.
- 3. Himanshu Singh. "Practical Machine Learning and Image Processing", Apress, 2019.
- 4. RajalingappaaShanmugamani"Deep Learning for Computer Vision : Expert techniques to train advanced neural networks usingTensorFlow and Keras",Packt Publishing, 2018.
- 5. François Chollet "Deep Learning with Python", Manning Publications Co., NY, 2018
- 6. Dr. Adrian Rosebrock, "Deep Learning for Computer Vision with Python", I Edition, PyImageSearch, 2017.
- 7. Phil Kim. "MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 8. Jan Erik Solem, "Programming Computer Vision with Python", Creative Commons, 2012.
- 9. Valentina Zharkova, Lakhmi C. Jain, "Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images", Springer, 2007

SECA	4007	REAL-TIME SYSTEM DESIG	:N	LT	P	Credits	Total marks
		REAL-TIME STSTEW DESIGN		2 0	2	3	100
Pre rec	quisite : N	IL	Co	Requ	site:	NIL	
• • •	To learn To discu To learn	es ain the features of real-time applications. different task scheduling algorithms for real-tin ass various fault-tolerance techniques available about real-time operating systems and their c about various software tools for development	for real- time syste haracteristics.		stem	s	
UNIT		CONTENTS					HOURS
I	Real-tim Constrai	UCTION TO REAL-TIME SYSTEMS e system characteristics-Hard real-time a nts- Modelling Timing Constraints of typica Flight controller.		•		-	9
II	Task Mo schedule Handling	IME TASK SCHEDULING odelling -Types of Schedulers – Preemptive ar ers- Rate Monotonic Algorithm (RMA-Earlie g Resource sharing among real-time tasks – rity Ceiling Protocol for Deadlock prevention.	st Deadline First	Algorit	hm	(EDFA)-	9
III	Introduc freeRTC mailbox,	IME OPERATING SYSTEMS tion to RTOS –Survey of real-time OS:Vxwo IS – Creating Tasks –Multitasking using RTO message queues – Task Synchronisatior pres–Timers and Interrupts in RTOS-Memory I	S - Interprocess Co and Resource n	ommun nanage	icatio	on using	9
IV	Model b Vending	IME SYSTEM MODELLING ased system design frameworks - Petrinets a Machine - Air traffic controller system – Distr m performance - In the loop Testing - Hardwa	ibuted air defense s	system	– Ev	aluation	9
V	Real-tim	TUDY OF REAL-TIME SYSTEMS e PID controller-Real-time Multimedia comm -ECU in Automobiles	unication-Real-time	Datab	ases	-Aircraft	9

Course Outcomes

On completion of this course, students are able to

CO1- Identify timing constraints of real-time systems

CO2- Apply appropriate scheduling algorithms for timely execution of real-time tasks

CO3- Develop real-time applications using RTOS

CO4- Apply model based design approach for given real-time application

CO5- Apply fault tolerant design techniques in developing real-time systems.

CO6-Evaluate performance of real-time systems using model based design frameworks.

- 1. Philip. A Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 4th Edition.2012.
- 2. Jane W. S Liu, "Real Time Systems" Pearson Higher Education, 4th Edition, 2014.
- 3. Richard Barry, "Mastering the Free RTOS: Real Time Kernel", Real Time Engineers Ltd, 1st Edition, 2016.
- 4. Raj Kamal, "Embedded Systems- Architecture, Programming and Design" Tata McGraw Hill, 2nd Edition, 2014.
- 5. Warren Gay, "Beginning STM32: Developing with Free RTOS", Apress, 1st Edition, 2018.
- 6. Li Q, Yao C, "Real-Time Concepts for Embedded Systems", CMP Books, 1st Edition, 2003.

SECA302	System Verilog							Total marks
Pre requi	site: HI	DL Programming	Co Requisite: N		0	Z	3	100
Course O	bjectiv	 es	•					
	•	e the fundamental concepts of verilog						
		stand systemVerilog data types and capabilitie	S					
• To	o enum	erate system Verilog RTL and abstraction						
• T	o analy:	ze dynamic types and arrays for behavioral mo	deling					
• Te	o evalua	ate System Verilog Assertions for design and v	erification					
JNIT	CONTE	NTS						HOURS
	Digital	Design using Verilog HDL						9
	Modellir Styles f	re modeling with the Verilog HDL: Encapsulati ng. Logic system, Data types and operators. E or Synthesis of combinational logic and seq ogy independent design	ehavioral descrip	tions	in v	erilo	g HDL.	
	System design. <i>i</i> Verilog Logic, Packag Arrays,	ction to System Verilog Verilog standards, Key SystemVerilog Advantages of System Verilog over Verilog, Da data types, 2 - State Data types, Bit, byte, sho Enumerated data types, User Defined data es, Type Conversion: Dynamic casting, Static Multidimensional Arrays, Packed Arrays, s, Tasks and Functions: Verilog Tasks and Fur	ata Types: Verilog ortint, int, longint, a types, Struct o Casting, Memori Associative Arra) data 4 - S Jata es: A	tate type rray:	es, data s, s, D	a types. Strings, lynamic	9
	Connec Verilog System Modpor System	ting the Test bench and Design interface signals - Limitations of Verilog interface Verilog port connections, Interface instantiat ts, Interface References, Tasks and functions Verilog Event Scheduler, Clocking Block, ich Environment, Verification plan	ace signals, Syste ion, Interfaces A in interface, Veril	lrgum og E ^r	ients vent	, Ir Scł	erfaces, nterface neduler,	9
	Constra Randon method: Inherita	ained Randomization N Variables - rand and randc, Randomize() Me s, Constraints in the class, Rand_mode and co nce, Constraint Overriding, Set Membership, D intsimplication (->), if/else, Inline Constraint	nstraint_mode, C	onstr	ainta	and		9
	F unctic Coveraç Group I Scalar Illegal t	pal Coverage and Assertion Based Verification ge Definition, Code Coverage, Functional Coversion Instances, Coverpoints, Bins - implicit bins, . bins, Cross products, Intersect, Select Expro- bins, Ignore bins, Coverage Analysis, Coverge erage(), .get_instance_coverage(), .set_instance_	tion /erage: Cover Gro Explicit bins, Bin essions, Conditio group Built-in Me	creat nal E thods	ion, Expre	Vec essi San	g Cover ctor and on (iff), nple(), .	9

On completion of the course, the student will be able to

CO1: Understand the digital system designs skills using VERILOG HDL based on IEEE-1364 standards and managed by Open Verilog International (OVI)

CO2: Model digital systems in Verilog HDL at different levels of abstraction

CO3: Know the simulation techniques and test bench creation.

CO4: Demonstrate the skill on writing test-benches for design of digital systems and connecting them with the design.

CO5 Analyze the complete systems through robust verification methods such as assertion based verification. **CO6** Design the digital systems such as FIFOs, memories, ATM interfaces, etc. using the learnt methods and demonstrate the skills.

- 1. Advanced Digital Design With the Verilog HDL, Michael D. Ciletti, 2nd Edition, PHI, ISBN: 978–0–07– 338054–4 2015.
- Digital Systems Design Using Verilog, Charles Roth, Lizy K. John, Byeong KilLee, Cengage Learning, ISBN-10: 1285051076, 2015.
- 3. Fundamentals of Digital Logic with Verilog Design, Stephen Brown and Zvonko Vranesic, 6th Edition, McGraw Hill publication, ISBN: 978–0–07–338054–4, 2014.
- 4. System Verilog for Design A Guide to Using System Verilog for Hardware Design and Modeling, Stuart Sutherland, Simon David mann and Peter Flake, 2E, Springer Science, ISBN-13: 978-0387-3339-91, 2006.
- 5. System Verilog for Verification-A Guide to Learning the Testbench Language Features, C Spear, Springer Science, IEEE press, ISBN-13: 978-0387-2703-64,2006.
- 6. SystemVerilog golden reference guide-A concise guide to System Verilog Doulos ,IEEE Standard-1800-2009, Version 5.0,ISBN: 0-9547345-9-9, 2012.
- 7. Step-by-Step Functional Verification with System Verilog and OVM, SasanIman, Hansen Brown Publishing Company, ISBN-13: 978-0-9816-5621-2, 2008.

SECA30	22 Graphical Programming for	Engineers	L 2	Т 0		Credits 3	Total marks 100
Pre requ	lisite: Basics	Co	Rec	-		-	100
Course	Objectives						
	Students will understand each topic by doing exerc	ise					
	Two sessions will be handled by industry people to						
	This is a learning by doing course						
	The learner can use this tool to understand any sul _abVIEW	pjects by implementing	or si	mula	ating	g the conc	ept using
• (Students can able to do their project in short span	of time					
UNIT	CONTEN	ITS					HOURS
	LabVIEW FOUNDATIONS						9
	LabVIEW Operating Environment-Front Panels,	Controls and Indicator	rs, Bl	lock	Dia	agrams,	
	LabVIEW Projects, Creating Vis, Basic Control	s and Indicators, Debu	uggin	gТ	ech	niques,	
	Creating SubVIs.						
	CONTROLLING PROGRAM EXECUTION WITH	I STRUCTURES					9
	For and While Loops, Shift Registers, Case	e Structure, Sequence	e Str	uctu	ıre,	Timed	
	Structures, Formula and Expression Nodes, Con	nbining While Loops wit	th Ca	ise S	Stru	cture.	
	ARRAYS AND CLUSTERS & CHARTS AND G	RAPHS					9
	Array Controls and Indicators, Auto-Indexing	, Two Dimensional	Array	/S,	Cor	npound	
	Arithmetic, Cluster Controls and Indicators, Int						
	Clusters and Error Handling Functions., Wavefor	m Charts, Waveform G	Graph	s, X	-Y (Graphs,	
	Time Stamps.						
IV	SIGNAL CONDITIONING & DATA ACQUISITIC			-			9
	Introduction- Basic Signal Conditioning Re	•					
	Thermocouple- RTDs- Strain Gauges- Curren						
	Functions- Amplification- Filtering and Averagi	ng- isolation- multiple	xing-	DIQ	Jilai	Signal	
V	Conditioning. APPLICATION USING GRAPHICAL PROGRAM						9
v	Logging Temperature data to a text file, Signal		nk co	ontro	이 F		J
	Generator, Equalizer design, Signal spectru modulation	-			•		

On completion of the course, the student will be able to

- CO1- Develop and edit functional block diagrams and front panels.
- CO2- Develop codes to load, save, and debug VIs.
- CO3- Analyze program execution through structures such as 'For-While' loops and 'Case Structures
- CO4- Analyze composite data in the form of Arrays and Clusters
- CO5- Implement techniques to acquire and process signals and can able to realize engineering concept using LabVIEW
- CO6- Develop solutions to the given problem using LabVIEW

- **1.** Jeffrey Travis, Jim Kring, Labview for Everyone: Graphical Programming Made Easy and Fun, 3rd Edition, 2009.
- 2. www.ni.com
- 3. http://www.learnni.com/getting-started/Home/Index/91
- 4. <u>https://www.halvorsen.blog/documents/tutorials/tutorials.php</u>

SECA30)23	AUGMENTED REALITY AND VIRTUAL REALITY	Т	Ρ	Credits	Total marks	
			0	2	3	100	
Pre requ	uisite: NII	Co Requisite: NIL					
Course	Objective	S l					
•	To explor	e the basic of AR/VR technology and devices					
•	To unders	tand the various elements and components used in AR/VR Hardwa	re an	d S	oftware		
•	To explor	e the industrial application of AR/VR technology					
•	To analyz	e the difference between AR and VR					
•	To enable	working on real life projects using AR/VR technology					
UNIT	CONTE	NTS				HOURS	
	AUGM	INTED REALITY				9	
	Introdu	tion to Augmented Reality, Augmented and Mixed Reality, Taxonon	ny, te	echr	nology		
	and fea	tures of augmented reality, Challenges with AR, AR systems and fu	nctio	nalit	y,		
	•	nted reality methods, visualization techniques for augmented reality,					
		in educational augmented reality applications, mobile projection int					
		less tracking for augmented reality, enhancing interactivity in AR en	viron	mei	nts,		
		ng AR systems					
		OPMENT OF AR MODELS				9	
	Unity, Basics of Unity, Understanding different panels in Unity, Moving, rotating & scaling						
		bjects in Unity, Game Panel in Unity, Physics in Unity, Increasing th	-		-		
	-	colors to Game object, Adding textures to Game object, Parent and					
	-	in Unity, Local/Global and Pivot/Center tools in Unity, Prefabs in Un	ity, S	crip	ots,		
		the spheres, Revolving the spheres				9	
111		ENTED REALITY ONE (ARONE) SECTION INTRODUCTION Inted Reality One (AROne) Section Introduction, Importing Vuforia pathetics	ockar	no ir	obido	9	
	-	nporting Vuforia package via Vuforia Core Samples, Web Camera o	-				
		the ARONE License Key, Capturing an Image, Creating a Vuforia I	•				
		ng Image Targets, Projecting Barbarian 3D Model on Image Target,					
		on an Android smartphone, Testing the output on iPhone or iPad.					
IV		NL REALITY				9	
	Introdu	tion of Virtual Reality, Fundamental Concept and Components of Vi	rtual	Re	ality,	-	
		ce between AR and VR, Virtual environment requirement, benefits o					
	Historic	al development of VR, Scientific Landmark, Primary Features and P	rese	nt			
	Develo	ment on Virtual Reality, Geometrical Transformations: Introduction,	Frar	nes	of		
	referen	e, Modelling transformations, Instances, Picking, Flying, Scaling the	eVE,	Со	llision		
	detectio						
V		APPLICATIONS				9	
	•	ering, Entertainment – Movies, Game development, Science, Medica					
	military applications, robotics application, Case study - CRO based experiment, Building						
	Electro	nic circuit using AR/VR.					

On completion of the course, the student will be able to

CO1-Apply mathematical concepts for understanding Augmented reality and Virtual Reality

CO2-Analyze the development of AR models

CO3-Analyze various Vuforia package inside Unity

CO4-Develop a Virtual reality Model

CO5-Implement AR/VR in game development

CO6-Build any Electronic circuit using AR/VR

- 1. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.
- 2. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009
- 3. Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, Wiley 2016
- 4. Jason Jerald. 2015. The VR Book: Human-Centred Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA, 2015.
- 5. Augmented Reality: Principles and Practice (Usability) by Dieter Schmalstieg& Tobias Hollerer, Pearson Education (US), Addison-Wesley Educational Publishers Inc, New Jersey, United States, 2016.
- 6. Learning Virtual Reality: Developing Immersive Experiences and Applications for Desktop, Web, and Mobile, Tony Parisi, O'Reilly Media; 1 edition, 2015.

SECA3	024	ADVANCED ELECTRONIC TEST ENGINEE	RING	L 3	T	P 0	Credits 3	Total marks
Pre req	uisite: N	 IL	Co Requisite: NIL	-				
Course	Objectiv	es						
•	To impa	rt knowledge on various types of printed circuit	boards.					
•	To unde	rstand component level and board level automa	ated testing method	oloc	nies.			
			Ū		j. e e .			
	•	rt knowledge on automated test equipment sys						
•	To unde	erstand the principle of fault simulation and test	fixture design for au	Itom	ate	d tes	sting	
•	To disse	eminate the importance of design for testability.						
•	Study al	bout the applications of computer vision in auto	mated PCB testing					
UNIT		CONTENTS						HOURS
1		ECHNOLOGYAND TESTING METHOD						9
	techno	I Circuit Boards(PCB) - Construction - Types of logy – PCBManufacturing process -Fault types acturing- PCB Inspection methods - Bare Board tion.	and causes in circu	iits d	durir	ng	unt	
II	ELECT Sympto Electric test – E	FRICAL TESTING OF ASSEMBLED PCB om Recognition - Component failure Analysis - cal tests -Text fixtures - Bed of nails fixtures - C Burn-in-test - Fault diagnostic methods- Electron nic components, subassemblies.	ross talk test - Mocl	k up	tes	t - Ir	que - n circuit	9
								9
IV	Automa formats pattern	YSTEM ARCHITECTURE ated Test Equipment (ATE) System Componen s - Digital High way - Analog Highway – Test Ve s - Fault Simulations. Technique - Bus Cycle S ethods - Design for Testability.	ector Generation - C	crea	ting	test	ve data	9
V	COMP Elemer Detecti Tools f	UTER VISION IN AUTOMATED PCB TESTING the of Computer vision - Image Acquisition- Image ion and Text recognition methods-Template mage for Computer Vision- OpenCV, Tensorflow and large 45	ge Pre-processing- tching- Faster RCN					9

On completion of this course, students are able to

- CO1- Identify various types of printed circuit boards and effectively use testing tools
- CO2- Perform manual trouble shooting of assembled PCBs.
- CO3- Identify faults in assembled PCBs using automated test equipment both at component level and board level
- CO4- Design board fixtures to carry out customized board level testing
- CO5- Develop test vectors and test patterns for fault identification in custom PCBs
- CO6- Apply computer vision techniques in automated electronic testing

- 1 Michael L.Bushnell et al., "Essentials of Electronic testing for digital, memory and mixed signal VLSI circuit",1st edition, Academic Press, 2018.
- 2 Parag.K.lala, "Digital circuit Testing and Testability", 2nd edition, Academic press, 2015.
- 3 Alfred L.Crouch, "Design for test for Digital ICs and Embedded core systems", 3rd edition, PHI, 2010.
- 4 Sabapathy S.R., "Test Engineering for electronic hardware", Qmax publishers, 1st Edition, 2007
- 5 Steve Holden"Computer Vision: Advanced Techniques and Applications" Clanrye International, 1st Edition, 2019.

SECA	CA7041 Artificial Intelligence for Industrial Applications L T P Credit 2 0 2 3							Total marks
Pre re	equisite	: NIL	Со		v		NIL	100
Cour • • •	To ass To imp To und	ectives plore the fundamental concepts of Artificial sess the applicability, strengths, and weakned part machine learning techniques derstand various CNNs velop the solutions for real world problems	esses of the basic		wle	edge	represen	tation
UNI T		CONTENTS						HOUR S
I	Evolut Inferri Proble	RVIEW OF AI tion of AI, Applications of AI, Classific ng systems and Planning, Uncertainty om solving by Search, Problem space, S mance measurement.	and towards Le	earn	ing	g Sy	ystems,	9
II	KNOV	WLEDGE REPRESENTATION						9
	Backw Engine	Order Predicate Logic, Prolog Programmin vard Chaining, Resolution, Knowled eering, Categories and Objects, Events, M ning Systems for Categories, Reasoning wi	ge Representati Iental Events and	on, I M	(ent	Onto	ological	
III	ML Te Classif	NDATIONS FOR MACHINE LEARNIN echniques overview, Dimensionality Reduc fication – Naïve Bayes; K-nearest Neighbo ble methods	tion, Clustering, I	,	9			
IV	Percep Netwo	ERSTANDING DEEP LEARNING otron, Activation Functions, Artificial N orks, Convolutional Neural Networks, E let, VGG, ResNets, DenseNets, Recurrent N	Evolution of CN		9			
V	AI app Detect	ICATIONS plications, Information Retrieval, Machine tion, Artificial Intelligence Techniques ns and Engineering Applications					~	9

On completion of the course, the student will be able to

CO1-Evaluate Artificial Intelligence methods.

CO2- Demonstrate knowledge of reasoning and knowledge representation for solving real world problems

CO3-Analyze various machine learning techniques

CO4-Identify suitable deep learning techniques for real world problems

CO5-Implement image classification and object detection systems

CO6-Solve real world problems in cyber physical systems using AI

- 1. Phil Kim. "MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 2. Jan Erik Solem, "Programming Computer Vision with Python", Creative Commons, 2012.
- 3. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, 3rd Edition, 2015.
- 4. Alpaydin, E., "Introduction to Machine Learning", 2nd edition, MIT Press, 2010.
- 5. Nils J. Nilsson, "The Quest for Artificial Intelligence", Cambridge University Press, 2009.
- 6. M. Tim Jones, "Artificial Intelligence: A Systems Approach (Computer Science)", Jones and Bartlett Publishers, Inc.; 1st Edition, 2008.
- 7. William F. Clocksin and Christopher S. Mellish, "Programming in Prolog: Using the ISO Standard", 5th Edition, Springer, 2003.

	A1406 EW)	EW) INDUSTRY 5.0 FOR ELECTRONICS ENGINEERS								
Dr	eusiaitas NII		<u> </u>	2	0	0	2	100		
	quisite: NI se Objecti		60	Rec	luis	site:	INIL			
	-	nt with the digital transformation of Industry 5.0								
•	To recog	nize the power of industry to achieve societal	goals beyond jobs a	ind g	grov	vth				
•	_	stand the design of personalized electronic		-	-					
•		on methods of interaction between humans a	•							
•		op the concept of electronics manufacturing be		nd o	ntin	niza	tion			
•			syonia automation a		pun	ΠZα				
UNIT		CONTENTS						HOURS		
	INDUSTR	RY 4.0								
		tion to Industry 4.0, Industry 4.0: The Fou					listory			
1	of Industry 4.0, Industry 4.0 by definition, Component of Industry 4.0, The							9		
		hities in Industry 4.0, Industrial Internet, S	mart Factory, Sm	art	Bui	ldir	ngs,			
	Smart M	anufacturing, Smart Farming.								
	INDUST						,			
		n from Industry 1.0 to 5.0, Introduction	•							
2	-	g Issues, LEAN Production Systems, ive, Smart Factories, Healthcare and Hu						9		
	-	on Sensors, Collaborative Platform and	-							
		a and Advanced Analysis.	2			C				
	DIGITAL	TRANSFORMATION TO SOCIETY 5.0								
	Digital 7	Transformation, Introduction to Digital Tr	ansformation. Dig	rital	bu	sine	ess			
	e	nation, Causes of disruption and transforr		-						
3		nd realities, Digital transformation across						9		
		evelopment, e-Governance and the public				•				
		rre, Food, Manufacturing, Disaster Contro	l, Elements of So	ciet	y 5	.0, 1	Data			
	Driven to	o Society, Humanity Vs Society 5.0.								
	SMART V	VORLD								
	Introduc	tion: Sensing & actuation Communicati	on. Electronics in	n S	mai	rt ci	tv. 5G			
4	Introduction: Sensing & actuation, Communication, Electronics in Smart city, 5G Technology, Communication protocols, Integration of Sensors in Robots and							9		
	1									
	Artificia	l Intelligence, Human-Machine Interac	tion, Industrial l	loT•	- A	Appl	ication			

	Plant Safety and Security (Including AR and VR safety applications), Facility Management., Intellectual Property Rights- Case Studies - Milk Processing and Packaging Industries.	
5	CYBER SECURITY IN INDUSTRY 5.0 Introduction to Cyber Physical Systems (CPS), Architecture of CPS, Data science and technology for CPS, Prototypes of CPS, Emerging applications in CPS including social space, crowd sourcing, Networking systems for CPS applications, Wearable cyber physical systems and applications, Domain applications of CPS: Agriculture, Infrastructure, Disaster management, Energy, Intellectual Property Rights (IPR) : Case Studies- Augmented Reality Virtual Reality	9

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 – Identify the digital transformation power of Industry 5.0 to achieve societal goals beyond jobs and growth

CO2 – Analyze enhanced new production models in electronics

CO3 – Implement various electronics manufacturing technologies beyond automation and optimization

CO4 - Design suitable sensors for smart world real time applications

CO5 – Evaluate the performance of various cyber physical systems

CO6 – Create personalized electronics products combining the various industry 5.0 Applications with deep knowledge on Intellectual Property Rights

- 1. S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press. Availability:https://www.amazon.in/Introduction-IoT-Sudip-Misra/dp/1108959741/ref=sr 1 1?dchild=1&keywords=sudip+misra&gid=1627359928&sr=8-1.
- S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and Industry 4.0. CRC Press. Availability:https://www.amazon.in/dp/1032146753/ref=sr_1_3?dchild=1&keywords=sudip+misr a&qid=1627359971&sr=8-3
- 3. Klaus Schwab, "Fourth Industrial Revolution", Random House USA Inc, New York, USA, 2017.
- 4. Oliver Grunow, "SMART FACTORY AND INDUSTRY 4.0. The current state of Application Technologies", Studylab Publications, 2016.
- 5. Alasdair Gilchrist, "INDUSTRY 4.0: Industrial Internet of Things", Apress, 2016.